Probing the dynamics of biomolecules in liquid water by terahertz spectroscopy

Nguyen Quang Vinh
Institute for Terahertz Science and technology
Physics Department, UC Santa Barbara
Spectroscopy probes structure and dynamics

Terahertz

Near infrared

UV-Visible

Microwave

Terahertz

Infrared

Ultraviolet

X-ray

N. Q. Vinh, ITST, Terahertz seminar fall 2010

Vinh@itst.ucsb.edu
Terahertz: Conformational flexibility

Domain 1

Domain 2

T4 Lysozyme

http://molbio.info.nih.gov/cgi-bin/moldraw?1LZS
Theoretical calculations for Lysozyme

Normal mode analysis and Monte Carlo simulations

Hen Egg White Lysozyme

Normal Mode

Molecular Dynamics

Molecular Dynamics

N. Q. Vinh, ITST, Terahertz seminar fall 2010
Limited Terahertz Absorption Measurements

Limited to Dry Protein Measurement

Markelz et al. (2002)

Previous work: Dry/Moist
Water absorption – Data collection from literature

N. Q. Vinh, ITST, Terahertz seminar fall 2010
Water absorption: challenge

1mm water \(\sim 10^{18} \) attenuation

Precision Measurements

Terahertz absorption: previous data

Fundamental optical phenomena

A glass without and with water showing how light is refracted through water
Absorption and Refraction of water—Data collection from literature

N. Q. Vinh, ITST, Terahertz seminar fall 2010
Related fundamental quantities

Complex index of refraction

\[n_{\text{sol}}^*(\nu) = n(\nu) + iK(\nu) = \sqrt{\varepsilon_{\text{sol}}^*(\nu)} \]

Refractive index Extinction coefficient \[K = \frac{c\alpha}{4\pi\nu} \]

Complex dielectric function

\[\varepsilon_{\text{sol}}^*(\nu) = \varepsilon_{\text{sol}}'(\nu) + i\varepsilon_{\text{sol}}''(\nu) \]

\(\propto \) Energy stored per unit volume \(\propto \) Energy dissipated per unit volume

\[n(\nu), K(\nu) \Rightarrow \begin{cases} \varepsilon_{\text{sol}}'(\nu) = n^2(\nu) - K^2(\nu) \\ \varepsilon_{\text{sol}}''(\nu) = 2n(\nu) \cdot K(\nu) \end{cases} \]

\[\begin{align*} \varepsilon'(\nu); \varepsilon''(\nu) &\Rightarrow \begin{cases} n(\nu) = \sqrt{\sqrt{\varepsilon'^2 + \varepsilon''^2} + \varepsilon'} / 2 \\ K(\nu) = \sqrt{\sqrt{\varepsilon'^2 + \varepsilon''^2} - \varepsilon'} / 2 \end{cases} \end{align*} \]
What can we learn from $\varepsilon^*(\nu)$?

- Charge dynamics
- Charge density
- Electronic relaxation times
- Frequencies of classical or quantum oscillations
- . . .
- Detailed comparison with microscopic theory
Outline

- GHz-THz spectroscopy setup
- Absorption of protein in liquid water
- Effective medium theory for the dynamics of biomolecules in liquid water
- Conclusions
UCSB 7-700 GHz vector spectroscopy

Frequency extenders (65-700 GHz)
(Virginia Diodes, Inc. + Thomas Keating, Ltd.)

Vector Network Analyzer (10 MHz-43 GHz)
Frequency multipliers, mixers, horns
RF source from VNA port 1

Mixer

eg: \(f_b = 360 \text{ GHz} \)

Sample

LO source from VNA port 3

Mixer

Freq. SOUR1 = \(\frac{1}{12} f_b \)

eg: \(f = 30 \text{ GHz} \)

Freq. SOUR3 = \(\frac{1}{12} f_b - \frac{1}{12} \times 0.279 \)

eg: \(30 - 0.279/12 \text{ GHz} \)

REF

f = 279 MHz

to VNA

MEAS

f = 279 MHz

to VNA

<table>
<thead>
<tr>
<th>No.</th>
<th>Freq. band</th>
<th>Freq. Range (GHz)</th>
<th>Freq. factor</th>
<th>Horn dia. (mm)</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>WR10</td>
<td>75 – 110</td>
<td>x 3</td>
<td>40</td>
<td>234.12</td>
</tr>
<tr>
<td>#2</td>
<td>WR6.5</td>
<td>110 – 140</td>
<td>x 4</td>
<td>28</td>
<td>139.50</td>
</tr>
<tr>
<td>#3</td>
<td>WR5.1</td>
<td>140 – 220</td>
<td>x 6</td>
<td>20</td>
<td>100.80</td>
</tr>
<tr>
<td>#4</td>
<td>WR3.4</td>
<td>210 – 330</td>
<td>x 9</td>
<td>15</td>
<td>82.50</td>
</tr>
<tr>
<td>#5</td>
<td>WR2.2</td>
<td>280 – 440</td>
<td>x 12</td>
<td>12</td>
<td>54.20</td>
</tr>
<tr>
<td>#6</td>
<td>WR1.5</td>
<td>440 – 660</td>
<td>x 18</td>
<td>9</td>
<td>37.70</td>
</tr>
</tbody>
</table>

Frequency extension
Spectra – linear scale

![Spectra graph with different frequency bands and power levels]

- Power (mW) on the y-axis, Frequency (GHz) on the x-axis.
- Different frequency bands labeled: VNA / 10, WR10, WR6.5, WR5.1, WR3.4, WR2.2, WR1.5.
- Div 10 indicates a divide by 10 scale factor.
60-110 dB dynamic range

VNA

70 GHz to 700 GHz

Vapour (absorption line)

http://www.itst.ucsb.edu/vnavdi.html

N. Q. Vinh, ITST, Terahertz seminar fall 2010
Variable path length sample cell

Precise measurement of attenuation and phase shift

Water, water, water

\[I = I_0 e^{\alpha z} \]

\[\Delta A = -\Delta (\ln(I_{transmitted})) \propto \alpha \cdot \Delta l \]

1mm water ~ 10^{18} attenuation

[Graph showing extinction vs. frequency]

Precision Measurements

- Opaque wall
- Transparent windows
- Translation stage

Variable Path Length Sample Cell

Following C. Schmuttenmaer
Liquid measurements

Absorption

Phase shift

Intensity (W)

Unwrapped phase (degree)

Path-length (mm)

Path-length (mm)
Complex dielectric constant - water

\[\varepsilon^\prime_{\text{wat}} = n^2 - K^2 \]

\[\varepsilon^\prime\prime_{\text{wat}} = 2nK \]
Complex dielectric constant - water

\[\begin{align*}
\epsilon'_\text{wat} &= n^2 - K^2 \\
\epsilon''\text{wat} &= 2nK
\end{align*} \]
Conclusions

- Sensitive spectroscopy from 7 - 700 GHz
 High resolution and dynamic range up to 140 dB
 Large range of protein concentrations
 Real and imaginary response

- Use Bruggeman EMT to extract dielectric constant
 Dielectric spectroscopy of protein in water

- Water hydration level

- Dynamics of Lysozyme at 70-700 GHz
 Multiple harmonic oscillations,
 with a cut-off frequency of 300 GHz
Acknowledgements

- Prof. Jim Allen, Dr Louis-Claude Brunel, Devin Edwards, Jerry Ramian, Prof. Mark Sherwin,
 Institute for Terahertz Science and Technology
 Department of Physics, University of California, Santa Barbara

- Prof. Song-i Han, Prof. Kevin Plaxco, Dr. Takanori Uzawa, Dr. Alexis Vallée-Bélisle
 Department of Chemistry, University of California, Santa Barbara

- W. M. Kerk foundation for support